-90è journée française de médecine, Paris, 20 mai 2016-

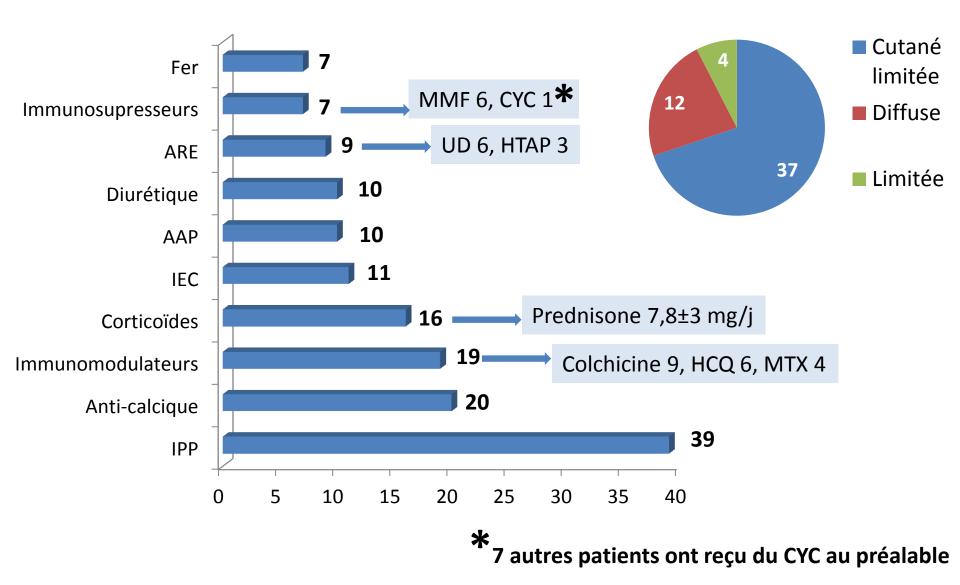
TRAITEMENT PHARMACOLOGIQUE DE LA SCLERODERMIE SYSTEMIQUE

Christian AGARD

Médecine interne, PHU3, Centre de compétence maladies systémiques et auto-immunes rares, CHU Nantes. Inserm UMR1087, Université de Nantes.

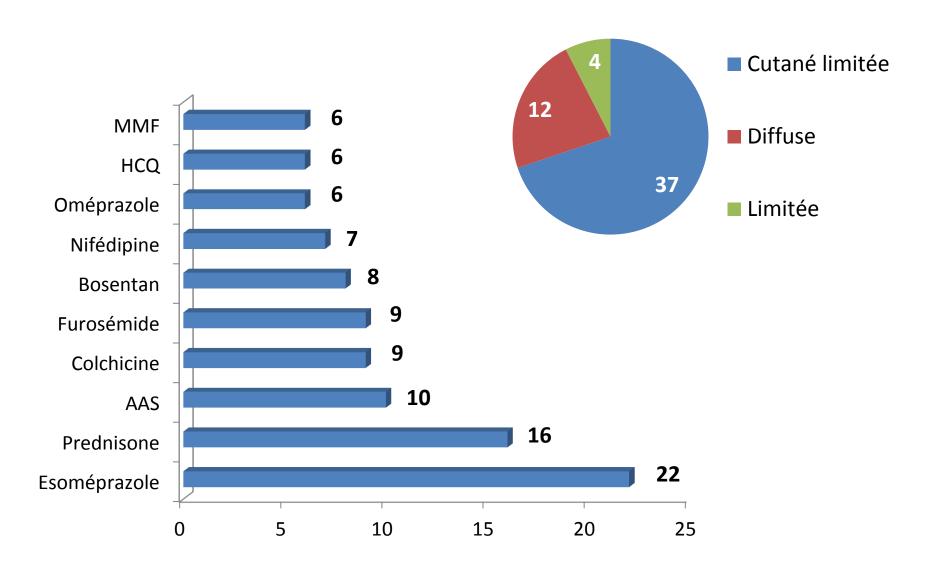
http://sclerodermie.net

TRAITEMENT PHARMACOLOGIQUE DE LA SCLERODERMIE SYSTEMIQUE

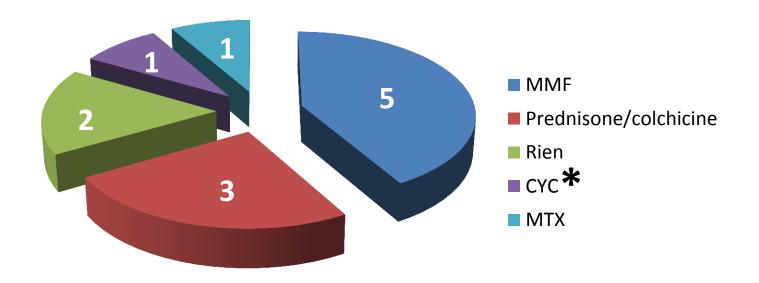

Introduction

Traitement des complications

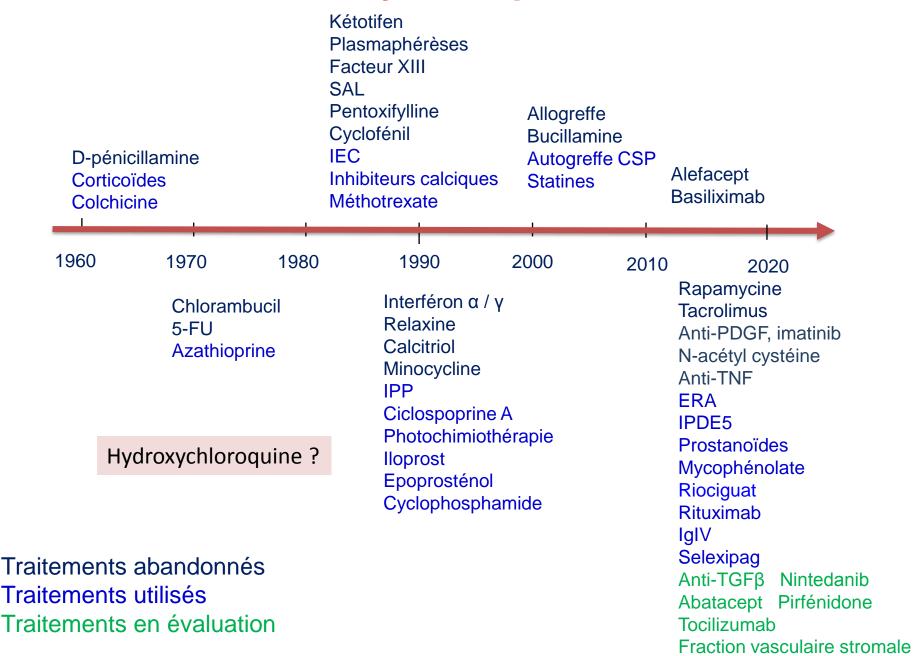
Traitement de fond


Conclusion

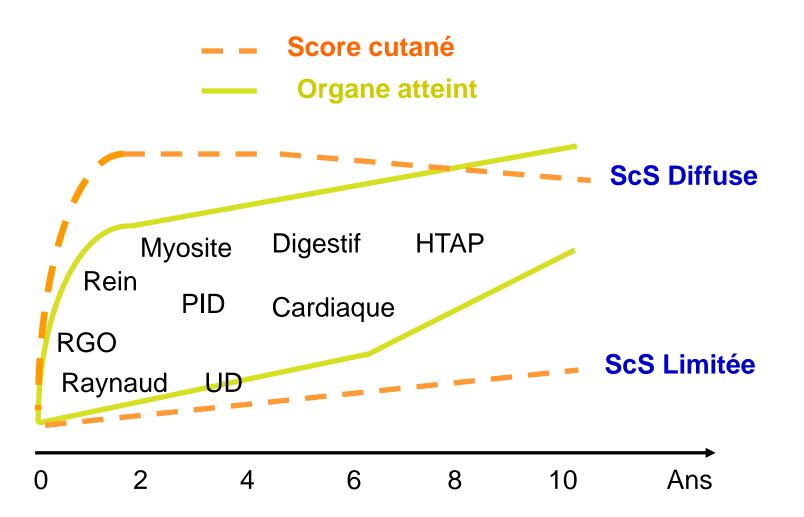
Classes thérapeutiques prescrites en consultation


4/53 (7,5%) ne prennent aucun traitement

Molécules prescrites en consultation


Traitement de fond des formes diffuses

- ➤ 8 femmes, 4 hommes; âge moyen=54,5 ans.
- ➤ Ancienneté du diagnostic : 6,7 ans.
- ➤ 8 Anti-topo-1, 1 anti-ARNpol3, 1 anti-RNP, 2 sans spécificités.



* 5 autres patients ont reçu du CYC au préalable

Sclérodermie systémique : traitements

ScS: Histoire naturelle

TRAITEMENT PHARMACOLOGIQUE DE LA SCLERODERMIE SYSTEMIQUE

Introduction

Traitement des complications

Traitement de fond

Conclusion

Traitements utilisés dans la vasculopathie digitale

- Inhibiteurs calciques +++ (nifédipine)
- Prostacycline: iloprost IV (ttt curatif des UD)
- Bosentan (ttt préventif des UD)
- Alpha-bloquants (prazosine), Naftidrofuryl, ARA-II Losartan
- IPDE5 : sildénafil ?
- Fluoxétine ?
- Statines?
- Macromolécules ??
- Selexipag ??

Atteinte articulaire et musculaire

AINS

- Corticoïdes
- Colchicine (+ effets sur la fibrose cutanée?)
- Hydroxychloroquine
- Méthotrexate
- Anti-TNF (si PR associée)

+ Arthrodèses, infiltrations, rééducation

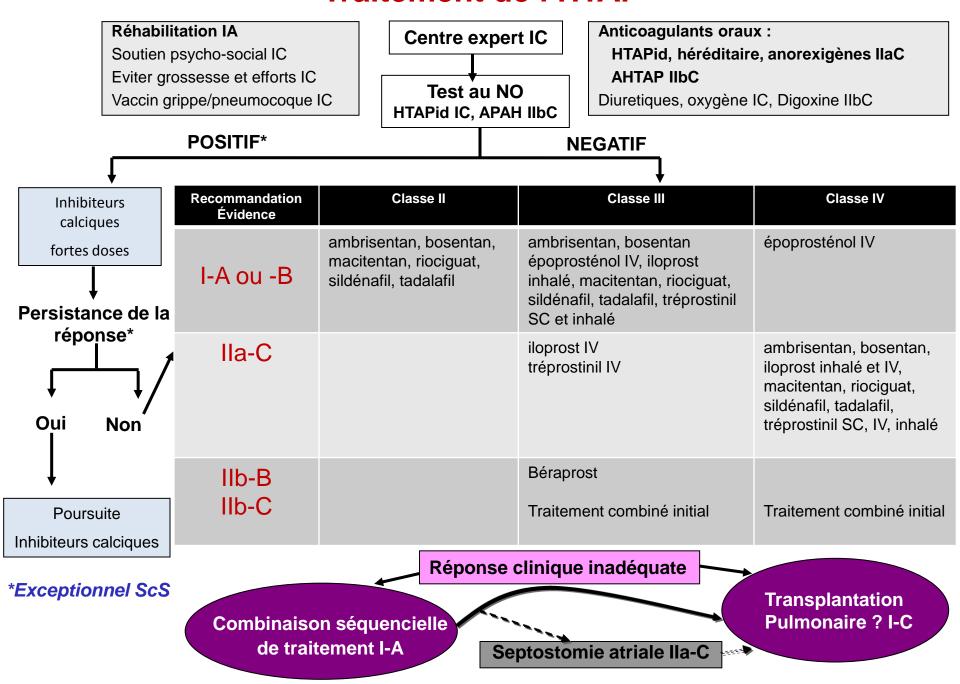
Atteinte digestive

- IPP, souvent à fortes doses
- Dompéridone
- Alginate
- Anti-H2
- Erythromycine
- Octréotide
- Antibiothérapie (pullulation)

+ Rééducation périnéale, cure de prolapsus...

Atteinte cardiaque

- Inhibiteurs calciques : nifédipine, nicardipine, amlodipine
- IEC
- Diurétiques


+ Pace maker

Pneumopathie infiltrante diffuse

- Corticoïdes, prednisone ≤15mg/j
- Cyclophosphamide iv, po
- Mycophénolate mofétil
- Azathioprine

+ O₂, vaccins (grippe/pneumocoque), réhabilitation, greffe

Traitement de l'HTAP

TRAITEMENT PHARMACOLOGIQUE DE LA SCLERODERMIE SYSTEMIQUE

Introduction

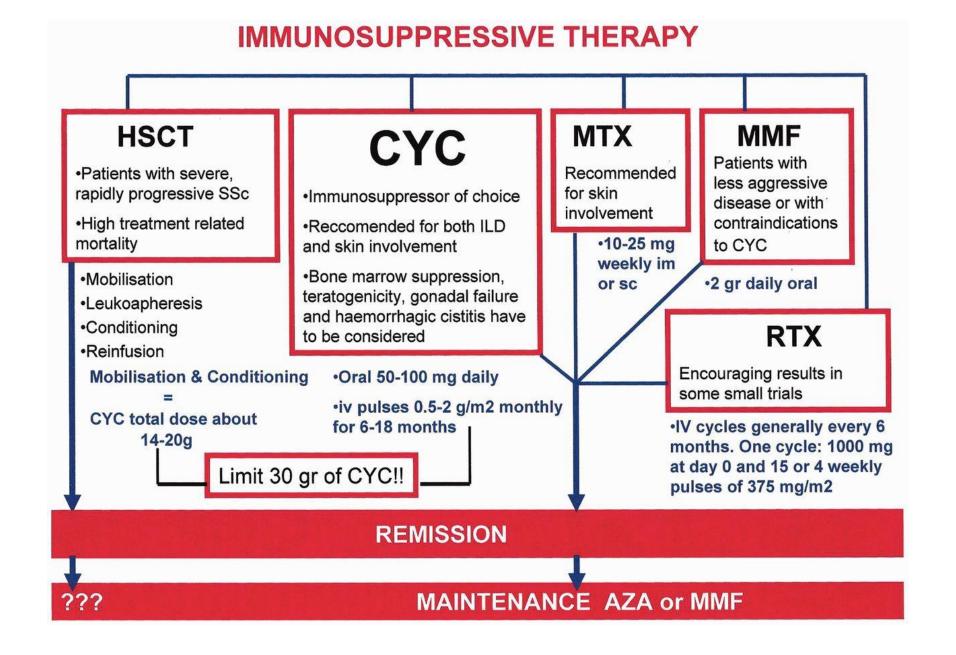
Traitement des complications

Traitement de fond

Conclusion

RHEUMATOLOGY

Review


Is immunosuppressive therapy the anchor treatment to achieve remission in systemic sclerosis?

Susanna Cappelli¹, Silvia Bellando-Randone¹, Serena Guiducci¹ and Marco Matucci-Cerinic¹

Abstract

Since activation of the immune system and a perivascular infiltrate of inflammatory cells are key features of SSc, immunosuppression has long been considered to be an anchor treatment. Non-selective immunosuppression remains central to the treatment of interstitial lung disease (ILD) and skin involvement, with CYC most widely used to obtain remission. The use of MTX as a first-line agent may be considered in the presence of skin involvement without ILD. More recently, MMF has shown encouraging results in observational studies, but still needs more formal evaluation to verify if it can be considered an alternative drug to CYC or a maintenance agent such as AZA. Rituximab has provided promising results in small open-label studies and other novel therapies targeting specific molecular and cellular targets are under evaluation. Patients with rapidly progressing diffuse cutaneous SSc should be evaluated for haematopoietic stem cell transplantation.

Key words: systemic sclerosis, cyclophosphamide, methotrexate, mycophenolate mofetil, azathioprine, rituximab, hematopoietic stem cell transplantation.

PRESS Prospective Registry of Early Systemic Sclerosis

- CYC iv 500mg/m² puis 750mg/m² ou plus.
- CYC po jusqu'à 2mg/kg/j.
- MTX 15-25 mg/semaine, po ou sc.
- MMF 2000-3000 mg en 2 prises.
- AZA jusqu'à 2-3 mg/kg/j, mais pas si PID.
- IgIV 2g/kg sur 2-5j.

Cyclophosphamide

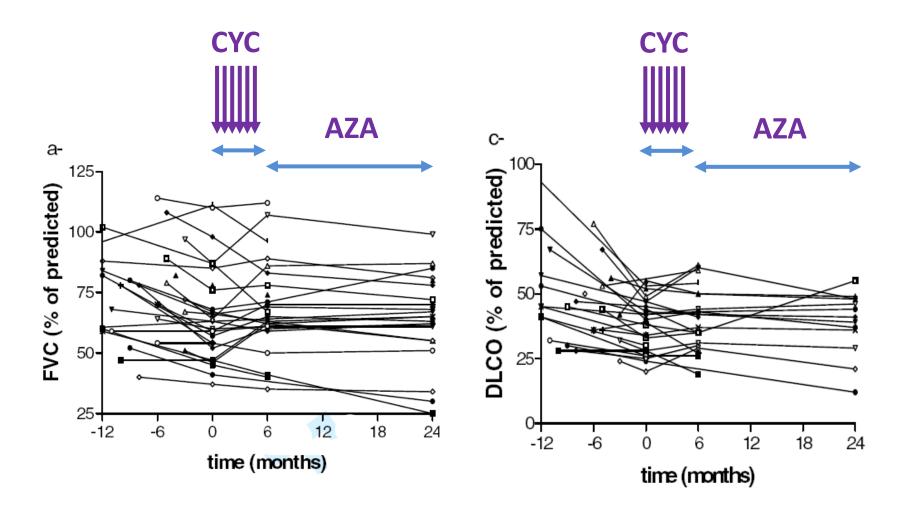
- > Immuno-suppresseur proposé pour :
 - L'atteinte cutanée évolutive (formes difffuses).
 - La PID évolutive.
 - L'atteinte myocardique.

Modalités : IV toutes les 4semaines, 12 perfusions

	Créatinine ≤ 300µmol/L DFG ≥ 25 mL/min	Créatinine > 300µmol/L DFG < 25 mL/min
≤ 65 ans	700 mg/m ²	600 mg/m ²
> 65 ans	600 mg/m ²	500 mg/m ²

ORIGINAL ARTICLE

Cyclophosphamide versus Placebo in Scleroderma Lung Disease


Donald P. Tashkin, M.D., Robert Elashoff, Ph.D., Philip J. Clements, M.D., M.P.H., Jonathan Goldin, M.D., Ph.D., Michael D. Roth, M.D., Daniel E. Furst, M.D., Edgar Arriola, Pharm.D., Richard Silver, M.D., Charlie Strange, M.D.,
Marcy Bolster, M.D., James R. Seibold, M.D., David J. Riley, M.D., Vivien M. Hsu, M.D., John Varga, M.D., Dean E. Schraufnagel, M.D., Arthur Theodore, M.D.,
Robert Simms, M.D., Robert Wise, M.D., Fredrick Wigley, M.D., Barbara White, M.D., Virginia Steen, M.D., Charles Read, M.D., Maureen Mayes, M.D., Ed Parsley, D.O., Kamal Mubarak, M.D., M. Kari Connolly, M.D., Jeffrey Golden, M.D., Mitchell Olman, M.D., Barri Fessler, M.D., Naomi Rothfield, M.D., and Mark Metersky, M.D., for the Scleroderma Lung Study Research Group*

En faveur du Cyclophosphamide :

CVF à M12 : -2,53%, p<0,03</p>

Peau: -5,3 vs -1,7, p=0,008

Le cyclophosphamide dans la PID-ScS en France

Répondeurs : 70% à 6 mois, 50% à 24 mois

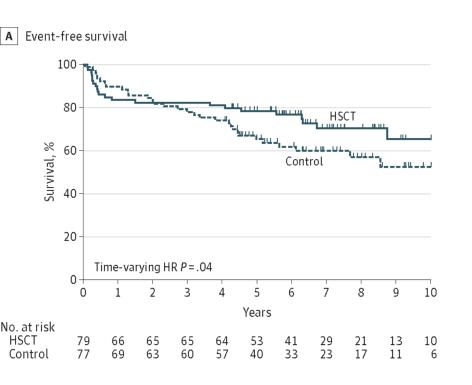
Protocole SCLEROCYC

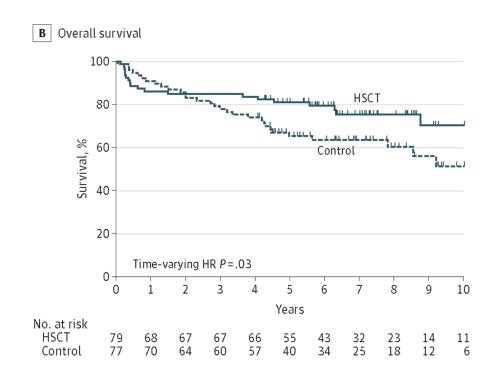
CYC 600-700 mg/m² versus Placébo toutes les 4 semaines, 12 perfusions

- ➤ Depuis janvier 2013 (25 patients inclus au 22 mai 2015).
- ➤ Etude phase 3, multicentrique, 65 centres.
- ➤ n=84 avec PID évolutive.
- Prednisone 15mg/j dans chaque groupe.
- Objectif principal :

Augmentation de la proportion des patients améliorés ou stabilisés sur la CVF à 12 mois de 15 % dans le bras placebo + prednisone à 50 % dans le bras CYC + prednisone.

Original Investigation


Autologous Hematopoietic Stem Cell Transplantation vs Intravenous Pulse Cyclophosphamide in Diffuse Cutaneous Systemic Sclerosis


A Randomized Clinical Trial

Jacob M. van Laar, MD, PhD; Dominique Farge, MD, PhD; Jacob K. Sont, PhD; Kamran Naraghi, MD; Zora Marjanovic, MD; Jérôme Larghero, PharMD, PhD; Annemie J. Schuerwegh, MD, PhD; Erik W. A. Marijt, MD, PhD; Madelon C. Vonk, MD, PhD; Anton V. Schattenberg, MD, PhD; Marco Matucci-Cerinic, MD, PhD; Alexandre E. Voskuyl, MD, PhD; Arjan A. van de Loosdrecht, MD, PhD; Thomas Daikeler, MD; Ina Kötter, MD, PhD; Marc Schmalzing, MD; Thierry Martin, MD, PhD; Bruno Lioure, MD; Stefan M. Weiner, MD; Alexander Kreuter, MD; Christophe Deligny, MD; Jean-Marc Durand, MD, PhD; Paul Emery, MD; Klaus P. Machold, MD; Francoise Sarrot-Reynauld, MD, PhD; Klaus Warnatz, MD; Daniel F. P. Adoue, MD; Joël Constans, MD; Hans-Peter Tony, MD; Nicoletta Del Papa, MD, PhD; Athanasios Fassas, MD; Andrea Himsel, MD; David Launay, MD, PhD; Andrea Lo Monaco, MD, PhD; Pierre Philippe, MD; Isabelle Quéré, MD, PhD; Éric Rich, MD; Rene Westhovens, MD, PhD; Bridget Griffiths, MD; Riccardo Saccardi, MD; Frank H. van den Hoogen, MD, PhD; Willem E. Fibbe, MD, PhD; Gérard Socié, MD, PhD; Alois Gratwohl, MD; Alan Tyndall, MD; for the EBMT/EULAR Scleroderma Study Group

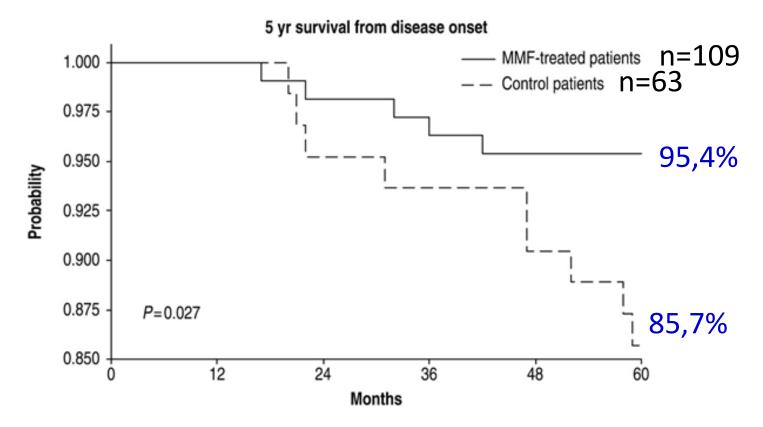
Groupe contrôle (n=77): CYC 750 mg/m², 12 perfusions

Cyclophosphamide dans la ScS diffuse

Effets du CYC à 2 ans :

mRSS: -8,8 (vs -19,9)

CVF: -2,8% (vs +6,3)


■ CPT: -1,3% (vs +5,1)

DLCOc : -4,1% (vs -4,7)

Mycophénolate mofétyl

- Inhibiteur de l'inosine monophosphate déshydrogénase, et donc de la synthèse *de novo* des nucléotides, effet cytostatique marqué sur les lymphocytes.
- Posologie : 2-3 g/j.
- Proposé pour traiter :
 - La ScS diffuse récente.
 - La Pneumopathie interstitielle diffuse de la ScS (SLS II).

Etude rétrospective MMF vs contrôles historiques

- 1,5 à 2g/j, pendant 1 à 5 ans.
- Indication : atteinte cutanée sévère ou PID évolutive.
- Bonne tolérance (12% EI).
- PID de novo : 12% vs 19% (p=0,037).
- Pas de différence sur le mRSS et la CVF.

						,,	,,	,		RNA PIII 26 (23.9)
Le et al.[31]	R	Yes	98	48.4/NA	1.83/NA	81 (83)	98(100)	24(24)	2(2)	NA
Mendoza et al.[20]	Р	No	25	48.6/NA	14.1/NA	NA	25(100)	9(36)	0	NA
Cuomo et al.[36]	С	No	1	63/NA	7/NA	1 (100)	1(100)	NA	NA	NA
Saketkoo et al.[37]	С	No	4	50.5/55.5	6.25/6	4 (100)	NA	NA	NA	NA
Zamora et al.[28]	R	No	17	50.8/NA	NA/2	10 (59)	15(88)	NA	NA	NA
Gerbino et al.[26]	R	No	13	NA/52	NA/5	8 (62)	9(69)	4(31)	Na	NA
Derk et al.[21]	P	No	15	50/NA	1.1/NA	10 (66.7)	15(100)	6(40)	0	NA
Koutroumpas et al.[29]	R	No	10	59.7/NA	7.7/NA	8 (80)	10(100)	10(100)	0	NA
Simeón-Aznar et al.[22]	Р	No	14	NA/54.4	NA/6.5	13 (93)	8(57)	8(57)	1(7)	NA
Liossis et al.[24]	P	No	6	46/NA	3.4/NA	4 (66.7)	6(100)	6(100)	0	NA
Plastiras et al.[33]	С	Yes	7	58/NA	NA	6 (86)	NA	Na	Na	NA
Busquets et al.[34]	С	No	1	NA/39	NA/0.67	NA	1(100)	NA	NA	NA
Bandelier et al.[39]	С	No	1	63/NA	4/NA	1 (100)	1(100)	NA	NA	NA
Bérezné et al.[30]	R	No	5	NA/NA	NA	NA	NA	NA	NA	NA
Gonzalez-Nieto et al.[43]	С	No	5	NA/NA	NA	NA	NA	NA	Na	NA
Gulamhusein et al.[38]	С	No	2	52/NA	NA	1 (50)	2(100)	Na	Na	NA
Herrick et al.[23]										
Protocol 1	Р	Yes	29	NA/55.1	NA	18 (62)	29(100)	8(33)	NA	RNA PIII 1(8)
Protocol 2	Р	Yes	25	NA/52.7	NA	20 (80)	25(100)	5(20)	NA	RNA PIII 1(4)
Protocol 3	P	Yes	61		NA	44(72)	61(100)	14(24)	NA	RNA PIII 9(22)
Panopoulos et al.[32]	CC	Yes	26	48/NA	5.8	24 (92)	18 (69)	19 (73)	NA	NA
P: Prospective, R: Retrospective, C: Case report/series, CC Case-control, ACA: Anti-centromere antibody, RNA PIII: RNA polymerase III, CAU: Caucasians, AA: African American, CAR: Caribbean, NA: Not availal doi:10.1371/journal.pone.0124205.t001 Omair MA, PLoS One 2015										
QUE TO: LOT INJUNITION DUTING UT24200	AND THE								•	

Author

Stratton et al.[19]

Vanthuyne et al.[25]

Nihtyanova et al.[27]

Design Controls n

No

No

Yes

P

P

R

Age mean/

median

(years)

NA/52

47/NA

NA/NA

13

16

109

Disease

NA/0.75

0.8/NA

NA

duration mean/

median (years)

Female

10 (77)

12 (75)

90(83)

n(%)

Diffuse

13(100)

13(81)

101(93)

n(%)

SCL70

n(%)

2(15)

NA

35(32.1)

ACA

n(%)

0

NA.

2(1.8)

Other

NA

U1 RNP 2(15)

U3 RNP 5(4.6)

U3 RNP 1(8) RNA PIII 2(15)

Author	Design	Controls	n	Age mean/ median (years)	Disease duration mean/ median (years)	Female n(%)	Diffuse n(%)	SCL70 n(%)	ACA n(%)	Other	
Stratton et al.[19]	Р	No	13	NA/52	NA/0.75	10 (77)	13(100)	2(15)	0	U1 RNP 2(15) U3 RNP 1(8) RNA PIII 2(15)	
Vanthuyne et al.[25]	Р	No	16	47/NA	0.8/NA	12 (75)	13(81)	NA	NA	NA	
Nihtyanova et al.[27]	R	Yes	109	NA/NA	NA	90(83)	101(93)	35(32.1) 2(1.8)	U3 RNP 5(4.6) RNA PIII 26 (23.9)	
Le et al.[31]	F								2(2)	NA	
Mendoza et al.[20]	F ●	N = 48	7, 2	21 publi	cations.				0	NA	
Cuomo et al.[36]	d		-	•		4 4 4			NA	NA	
Saketkoo et al.[37]	c •	2c2 e	VOI	uant de	puis 0,8 à	14,1	an.		NA	NA	
Zamora et al.[28]	F	• 1 ^{ère} ligne dans 3 études.									
Gerbino et al.[26]	F	T., 118	gne	e dans 5	etudes.				Na	NA	
Derk et al.[21]	F	Posol	oσi	△ 2g/i	durée 3 à	$60 \mathrm{m}$	nic		0	NA	
Koutroumpas et al.[29]	F	1 0301	Ugi	C 28/J,	auree 3 a	00 111	013.))	0	NA	
Simeón-Aznar et al.[22]	F	Effet s	sur	le mRS	S : 5 étud	es.			1(7)	NA	
Liossis et al.[24]	F		.		· · · · · · · · · · · · · · · · · · ·				0	NA	
Plastiras et al.[33]	€ •	Effet s	sur	Ia CVF	et/ou DLC	CO: 7	étude	es.	Na	NA	
Busquets et al.[34]	(•				NA	NA	
Bandeller et al.[39]	С	No	1	63/NA	4/NA	1 (100)	1(100)	NA	NA	NA	
Bérezné et al.[30]	R	No	5	NA/NA	NA	NA	NA	NA	NA	NA	
Gonzalez-Nieto et al.[43]	С	No	5	NA/NA	NA	NA	NA	NA	Na	NA	
Gulamhusein et al.[38]	С	No	2	52/NA	NA	1 (50)	2(100)	Na	Na	NA	
Herrick et al.[23]											
Protocol 1	Р	Yes	29	NA/55.1	NA	18 (62)	29(100)	8(33)	NA	RNA PIII 1(8)	
Protocol 2	P	Yes	25	NA/52.7	NA	20 (80)	25(100)	5(20)	NA	RNA PIII 1(4)	
Protocol 3	Р	Yes	61		NA	44(72)	61(100)	14(24)	NA	RNA PIII 9(22)	
Panopoulos et al.[32]	CC	Yes	26	48/NA	5.8	24 (92)	18 (69)	19 (73)	NA	NA	
P: Prospective, R: Retrospe	ctive, C: C	ase report/s	eries,	CC Case-contro	I, ACA: Anti-centron	nere antibod	y, RNA PIII:	RNA poly	merase III,	CAU:	

Caucasians, AA: African American, CAR: Caribbean, NA: Not availal

Omair MA, PLoS One 2015

Effets du MMF sur la fibrose cutanée

Author	Duration of Therapy (months)	Mean baseline MRSS	Median baseline MRSS	MRSS at end of study	Level of significance
Stratton et al.[19]	12	28	NA	17	p < 0.001
Vanthuyne et al.[25]	12	20	NA	13	p < 0.0001 for all patients p = 0.002 for skin group
Nihtyanova et al.[27]	60	NA	26	11	NA
Le et al.[31]	12	24.4	NA	17.5	p < 0.001
Mendoza et al.[20]	Mean 18.2	24.56	NA	14.5	p = 0.0004
Derk et al.[21]	12	22.5	21.5	8.4	p < 0.0001
Koutroumpas et al.[29]	12	17.2	NA	17.7	p = 0.55
Herrick et al.[23]					p = 0.43
Protocol 1	36	NA.	24	NA	-1.81 (95%CI-4.08, 0.460)
Protocol 2	36	NA	32	NA	-4.46 (95%CI6.69, -2.23)
Protocol 3	36	NA	23.5	NA	-3.10 (95%CI-4.27, -1.93)

doi:10.1371/journal.pone.0124205.t002

22,4±4,1

14,08±3,6

Effets du MMF sur les paramètres EFR

	Duration of Therapy (months)	Baseline DLCO (% predicted)	DLCO at end of study (% predicted)	Level of significance	Baseline FVC (% predicted)	FVC at end of study (% predicted)	Level of significance
Stratton et al.[19]	12	66	63	Not significant	87	88	Not significant
Vanthuyne et al.[25]	12	63	76	p = 0.0009	NA	NA	NA
Le et al.[31]	12	77.4	79.2	p = 0.336	79.4	80.7	p = 0.264
Mendoza et al.[20]	18.2	69	70.5	p = 0.45	NA	NA	NA.
Cuomo et al.[36]	5	60	NA	NA	104	NA	NA.
Saketkoo et al.[37]	3	30	NA	NA	80	NA	NA.
Zamora et al.[28]	24	50	NA	p = 0.84	72	NA	p = 0.57
Gerbino et al.[26]	24	51	NA	p = 0.38	NA	NA	NA
Derk et al.[21]	12	71.2	74.3	Not significant	99.2	105	Not significant
Koutroumpas et al.[29]	12	80.7	86.7	p = 0.66	79.5	87.1	p = 0.04
Simeon-Aznar et al.[22]	12	40	37	NA	64	64	NA.
Liossis et al.[24]	4-6	64.2	75.4	p = 0.033	65.6		p = 0.057
Herrick et al.[23]							
Protocol 1	36	58.8	NA	NA	76	NA	NA
Protocol 2	36	76.1	NA	NA	93.3	NA	NA
Protocol 3	36	71.5	NA	NA	87.8	NA	NA

NA not available, DLCO diffusing capacity of carbon monoxide, FVC functional vital capacity, VC vial capacity, TLC total lung capacity

doi:10.1371/journal.pone.0124205.t003

Etudes observationnelles avec le MMF dans la ScS diffuse récente (<3ans)

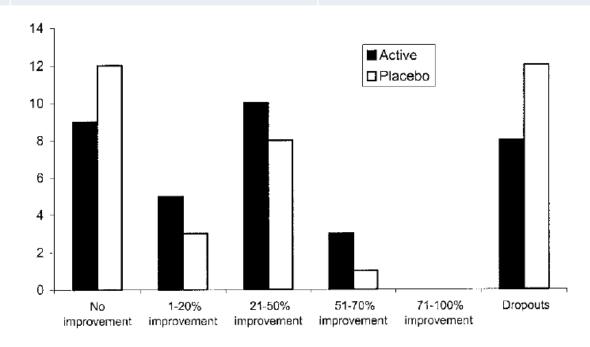
SAL puis MMF n=25

CYC puis MMF n=29

À 3 ans:

mRSS passe de 24 à 15,5 à 3 ans

Pas de TTT n=13


Autre IS n=19 MMF n=61

Le méthotrexate dans la ScS

- > 7,5 à 20 mg/semaine.
- > Effets le plus souvent modestes sur la fibrose cutanée.
- Utile dans les atteintes articulaires, musculaires.
- > Effets décrits sur a DLCO.

Méthotrexate dans la ScS diffuse récente -Effets à 12 mois-

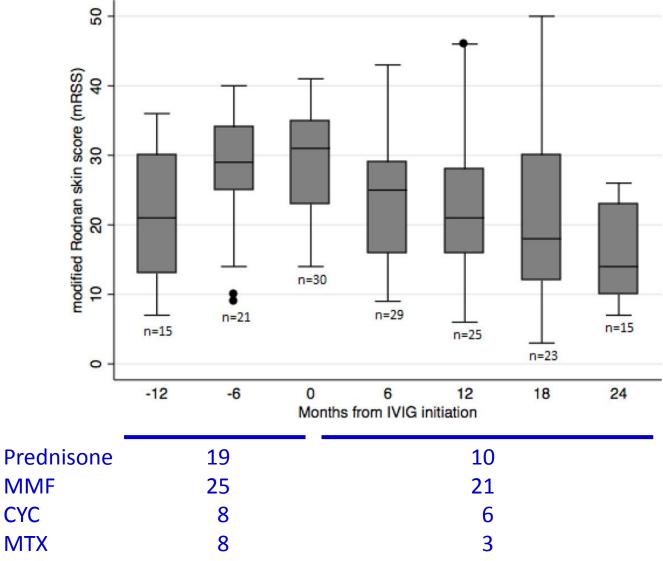
	Méthotrexate 15mg n=35	Placebo n=36	p
mRSS	-4,3	+1,8	<0,009
DLCOc %	-3,7	-7,7	<0,03

Modified Rodnan Skin Score Outcome Percentages

Corticoïdes

- Proposé pour traiter :
 - Arthralgies, arthrites.
 - Myalgies, myosites.
 - Péricardite, Myocardite.
 - Sclérodermie oedémateuse.
 - Pneumopathie infiltrante diffuse.

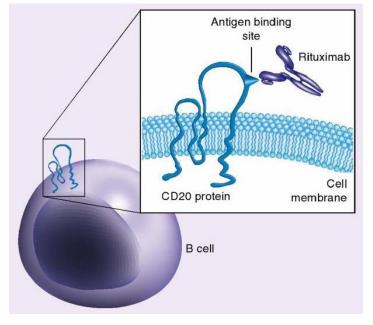
- Modalités :
 - Prednisone ≤ 15mg/24h.
 - Prednisone 1mg/kg/j (myosite)

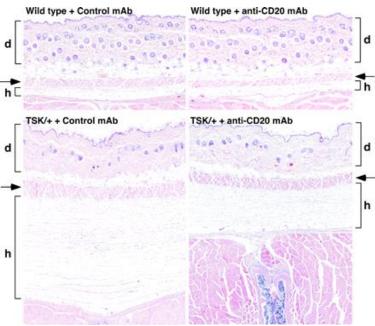

Immunoglobulines IV dans la ScS

- Proposées pour traiter :
 - La myosite de la ScS.
 - La ScS diffuse réfractaire ?
 - Atteinte digestive réfractaire chez des patients avec myosite ?

- Modalités :
 - 2g/kg/mois pendant 6 mois.
 - 2g/kg/1,5 à 4 mois pendant 12 mois ou plus.

Effets des IgIV sur le mRSS


n=30 ScS diffuse active, dont 5 avec myosite associée



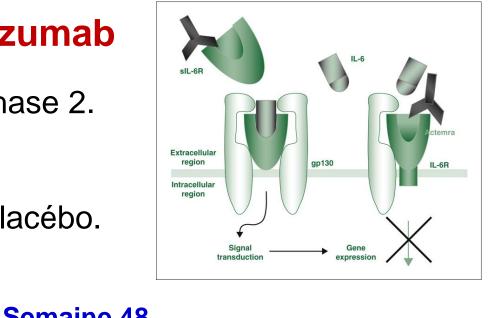
Rituximab

> 1000 mg J1-J15 ou 375mg/m²/7j, 28j.

- > Effets décrits :
 - sur la fibrose cutanée.
 - sur l'atteinte pulmonaire.
 - sur les atteintes articulaires.
 - sur les atteintes musculaires ?

Sanges S, et al. Rev Med Interne 2016

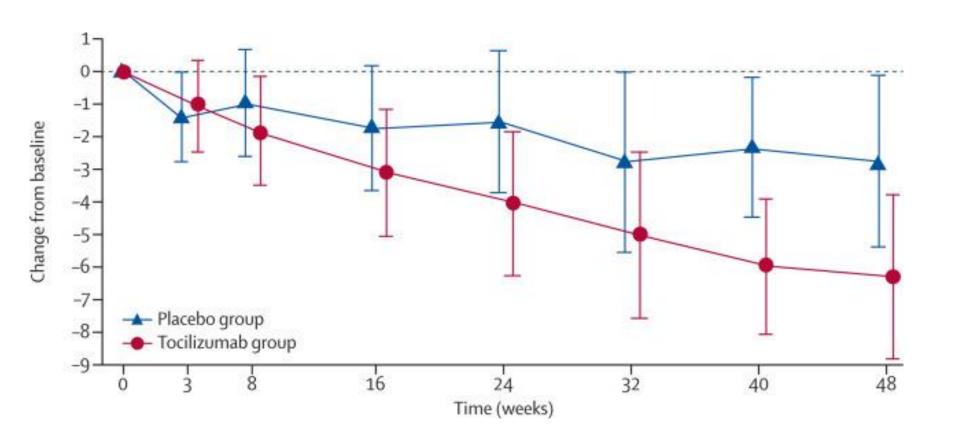
Effets cutanés et pulmonaires du rituximab

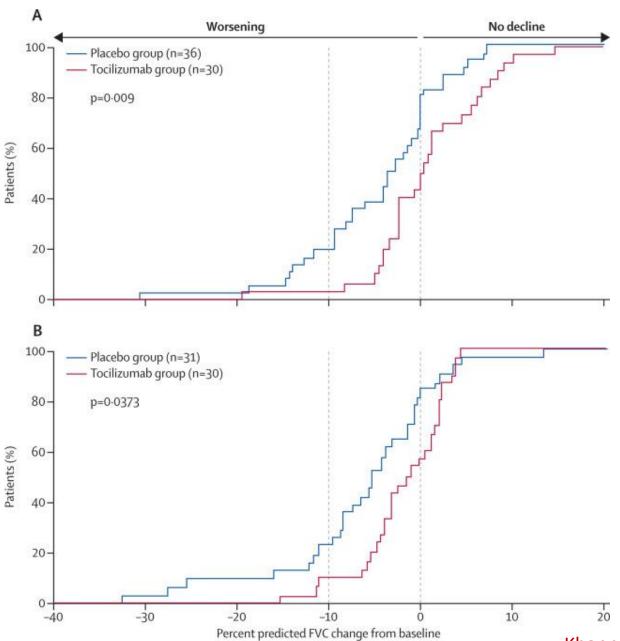

Reference	Etude	n	Durée ScS (mois)	Suivi (mois)	Effets mRSS	Effets pulmonaires
Lafyatis 2009	Interventionnelle Ouverte	15	14,5	12	Stabilisation 21±9 à 21±10	Stabilisation CVF 89% à 93% DLCO 80% à 78%
Bosello 2010	Interventionnelle Ouverte	9	49	36	Amélioration 21±1 à 4±1	Stabilisation CVF 92% à 97% DLCO 58% à 58%
Jordan 2014	Observationnelle Cas-contrôle	63	72	7	Amélioration 22±10 à 18±10	Stabilisation CVF 61% à 61% DLCO 41% à 45%
Bosello 2015	Interventionnelle Ouverte	20	30,4	48,5	Amélioration 22±10 à 11±7	Stabilisation CVF 87% à 88% DLCO 55% à 60%
Giuggoli 2015	Observationnelle	10	75	37	Stabilisation 25±4 à 20±7	N/A

Tocilizumab

- Essai randomisé contrôlé, phase 2.
- ScS ≤ 5 ans, mRSS 15-40.
- > n=43 TCZ 162mg/7j SC vs placébo.

Samaina 24


Résultats:


	Semaine	24	Semaine	40
	TCZ	PCB	TCZ	PCB
mRSS	-3,92	-1,22	-6,33	-2,77
	p=0	,091	p=	0,057
HAQ-DI	0,137	0,118	-0,002	0,205
	p=0	,85	p=	0,12
FACIT	2,68	1,26	3,11	0,36
	p=0	,52	p=	0,19
-10% CVF	3%	19%	10%	23%

1 décès par infection pulmonaire sous TCZ.

FaSScinate: évolution du score mRSS

FaSScinate : données sur la CVF

Khanna D, Lancet 2016

Peu ou plus utilisé...

Ciclosporine A

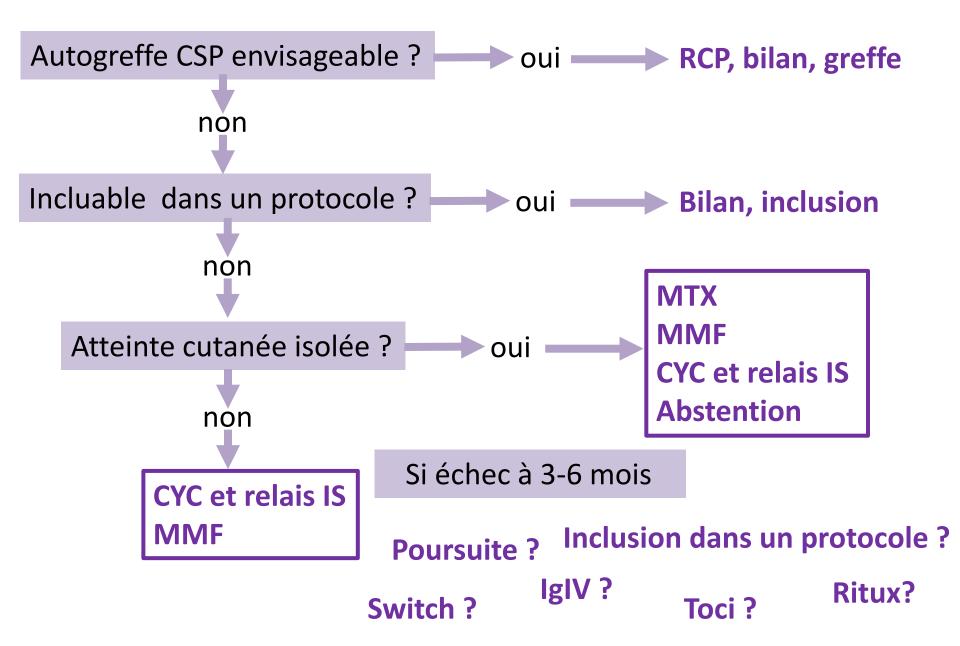
- > A pu améliorer le score de fibrose cutanée mRSS.
- > Evalué en association avec l'iloprost IV.
- Inconvénients :
 - Risque de crise rénale.
 - HTA.

D-pénicillamine
Thalidomide
Sérum anti-lymphocytaire
N-acétyl cystéine
Imatinib

TRAITEMENT PHARMACOLOGIQUE DE LA SCLERODERMIE SYSTEMIQUE

Introduction

Traitement des complications


Traitement de fond

Conclusion

Traitements en cours d'évaluation

- > Abatacept, inibiteur de la co-stimulation T.
- > SAR100842, inhibiteur du récepteur de l'acide lysophosphatidique.
- Nintedanib, inibiteur de tyrosine kinase.
- Pirfénidone, anti-fibrosant.
- > Anti-TGFβ.
- Riociguat.
- ➤ Paquinimod, MEDI-551 (anti-CD19), ...

Sclérodermie systémique diffuse évolutive récente

