Molecular Phenotypes in Systemic Sclerosis Enable Patient Stratification and Precision Medicine

Michael L. Whitfield, PhD
Chair and Professor of Biomedical Data Science
Director, Center for Quantitative Biology
Co-Director, Burroughs Wellcome Big Data in the Life Sciences Training Program

Dartmouth
GEISEL SCHOOL OF MEDICINE

Global View of Gene Expression in SSc Tissues

- Identified in multiple cohorts of SSc patients
- Identified in multiple end-target tissues
- Driving pathways are conserved across cohorts

Gene Expression in SSc Skin is Dominated by Intrinsic Gene

Expression Subsets

- Subsets based on gene expression profiling in skin
- Found in multiple independent skin cohorts

Gene Expression Subsets Identify Patients that Improve with Therapy.

Development of a SSc Subset Classifier Using Machine Learning

SCOT: Scleroderma Cyclophosphomide or Transplantation

- Patients with severe scleroderma were randomized to receive either 12 doses of cyclophosphamide or myeloablative hematopoietic stem cell transplant
- Participants were followed for $5+$ years and evaluated for event-free survival
- Events: respiratory, cardiac, or renal failure; death
- Patients who received a transplant had significantly increased EFS

Sullivan K, et al. NEJM. (2018)

Gene Expression Analyses of PBMC Samples from SCOT Trial Participants

- Gene expression analyses were performed on 63/75 per-protocol (PP) patients defined as the participants who received at least nine doses of cyclophosphamide or received a HSCT.
- 30 HSCT, 33 CYC (Per-protocol)
- 229 RNA samples analyzed by DNA microarray
- 63 SSc patients analyzed over six timepoints: Baseline, $8,14,20 / 26,38,48 / 54$ months
- Analyzed for , intrinsic subtype, differential expression, cell-type deconvolution, and association with covariates.

Dartmouth
Geisel school of medicine

Clinical Characteristics of Patients in the SCOT Gene Expression Cohort

Franks JM, Martyanov et al. 2020 Ann Rheum Dis

Intrinsic Gene Expression Subsets in the SCOT Participant PBMC Gene

 Expression Data Mirror Previous Observations- Gene expression from DNA microarrays; applied classifier to determine subsets at baseline
- Identified gene expression modules associated intrinsic gene expression subsets in PBMCs using WGCNA.
- Asked the question, are there prognostic differences between subsets for these treatments?

Franks JM, Martyanov et al. 2020 Ann Rheum Dis

SCOT Event-Free Survival Stratified by Subset

Franks JM, Martyanov et al. 2020 Ann Rheum Dis

SCOT Conclusions

- The HSCT arm of the SCOT trial showed substantially larger changes in gene expression compared to CYC arm.
- Participants assigned to the fibroproliferative subset, who tend not to improve on immunosuppressive therapy (e.g. mycophenolate mofetil or abatacept), were the most likely to benefit from HSCT compared to CYC ($\mathrm{p}=0.0091$)
- Participants assigned to the normal-like subset did not show benefit from HSCT treatment over CYC ($\mathrm{p}=0.94$)
- Inflammatory patients show a trend toward improvement in HSCT which did not reach statistical significance $(\mathrm{p}=0.1)$

ASSET Study \& Intrinsic Subsets

- Summary of pilot study by Chakravarty et al. 2015
- Preliminary analyses in the ASSET Trial
- Randomized control trial of Abatacept to treat dcSSc
- Longitudinal skin biopsies collected
- RNA-seq for gene expression analyses

Abatacept Pilot Study: Inflammatory subset shows clinical response in skin

Patient Baseline Post-treatment

Imp1	I	I
Imp2	I	P
Imp3	I	L
Imp4	NL	P
Imp5	I	NL
NonImp1	NL	NL
Plb1	NL	NL
Plb2	I	I

Inflammatory signature in abatacept improvers

- $4 / 5$ improvers are inflammatory at baseline
- $4 / 5$ improvers show a significant decrease in the inflammatory gene signature $(\mathrm{p}=0.014)$
- Inflammatory patients show a trend towards greater MRSS improvement at 24 weeks vs. normal-like
(-13.5 ± 3.1 vs. $-4.5 \pm 6.4, \mathrm{p}=0.067$)
Chakravarty et al. ART 2015

Abatacept: Expression of genes regulated by CD28 show a decrease in improvers

CD28 pathway trends

cytotoxic T-lymphocyte-associated protein 4
v -akt murine thymoma viral oncogene homolog 1
inducible T-cell co-stimulator
c-src tyrosine kinase
CD4 molecule
PTPN6 protein tyrosine phosphatase, non-receptor type 6
PPP2R1A protein phosphatase 2 (formerly 2A), regulatory subunit A (PR 65), alpha
HLA-DRB3 major histocompatibility complex, class II, DR beta 3
HLA-DQA2 major histocompatibility complex, class II, DQ alpha 2
ICOSLG inducible T-cell co-stimulator ligand
HLA-DPB1 major histocompatibility complex, class II, DP beta 1
MAP3K14 mitogen-activated protein kinase kinase kinase 14
PPP2R5B protein phosphatase 2 , regulatory subunit B (B56), beta isoform
PAK2 p21 (CDKN1A)-activated kinase 2
BTLA B and T lymphocyte associated
HLA-DQA1 major histocompatibility complex, class II, DQ alpha 1
PAK1 p21/Cdc42/Rac1-activated kinase 1 (STE20 homolog, yeast)
CD3E CD3e molecule, epsilon (CD3-TCR complex)
PPP2R1B protein phosphatase 2 (formerly 2A), regulatory subunit A (PR 65), beta
oremomeor
iómosion
i,
\square

Dartmouth

ASSET Trial Analysis Overview

Khanna et al. Arthritis Rheum. 2020

Intrinsic Subsets \& Treatment Arm

Subsets as assigned at baseline

	Inflammatory	Normal-like	Proliferative
Abatacept	19	16	8
Placebo	14	17	10

Fisher's Exact Test: p-0.6112

Clinical outcomes by intrinsic subset in the ASSET trial

Hypothesis: Participants in the inflammatory subset will be the most likely to show improvement in MRSS with abatacept treatment.

- Change in mRSS over 12 months was significantly different between the abatacept and placebo treatment arms for the inflammatory ($\mathrm{p}<0.001$) and normal-like $(\mathrm{p}=0.03)$ subsets.
- No difference in mRSS for the fibroproliferative subset of patients ($\mathfrak{p}=0.47$)
- For $\mathrm{FVC} \%$ predicted, the fibroproliferative subset showed a numerical increase in $\mathrm{FVC} \%$ in the abatacept arm $(\mathrm{p}=0.19)$ while all other groups showed decreases in $\mathrm{FVC} \%$.
- All subsets showed decreases in HAQ-DI in the abatacept arm not observed in the placebo arm, with the most robust changes occurring in the inflammatory ($\mathrm{p}=0.09$) and normal-like ($\mathrm{p}=0.06$) subsets.

Khanna et al. Arthritis Rheum. 2020

Clinical outcomes by intrinsic subset in the ASSET trial

Conclusions

- Abatacept resulted in a marked divergence in mRSS change for the inflammatory subset with little impact on the fibroproliferative subset.
- Patients who improve on abatacept have the high expression of the Costimulation by the CD28 family pathway.
- Degree of pathway expression is correlated change in MRSS. Higher pathway expression results in a larger change in MRSS.

Dartmouth
Geisel school of medicine

Acknowledgements

Falk Medical Research Trust

BURROUGHS
WELLCOME
FUND 园

Whitfield Lab
Pioli Lab @ Geisel
Viktor Martyanov, Ph.D. Patricia Pioli, PhD
Mengqi Huang, Ph.D. Yue Wang, Ph.D.
Bhaven Mehta (MCB)
Dillon Popovich (MCB) Diana Toledo (MCB) Tamar Wheeler (MCB) Jennifer Franks (QBS) Monica Espinoza (QBS) Noelle Kosarek (QBS) Yiwei Yuan (QBS)
Tammara Wood
Whitfield Lab Alumni Guoshuai Cai Michael Johnson
Kim Archambault Jackie Taroni (MCB)
J. Matt Mahoney Jerry Li

Dartmouth
GEISEL SCHOOL OF MEDICINE

Gretel Torres (MCB)
Rajan Bhandari (MCB)
Michael Ball, PhD (MCB)
University of Michigan
Dinesh Khanna, MD
David Fox, MD
Veronica Berrocal, PhD Cathie Spino, PhD ASSET Team

Stanford
Lorinda Chung
David Fiorentino

SCOT Trial Participants

SCOT Trial Steering Committee
Leslie Crofford (Vanderbilt)
Lynette Keyes-Elstein (Rho)
Daniel Furst (UCLA)
Ellen Goldmuntz (NIH)
Maureen Mayes (UT)
Peter McSweeney (Colorado)
Richard Nash (Colorado)
Keith M. Sullivan (Duke)

